
Smart Contract Audit Report
for

Defina

Version 1.0

Trustlook Blockchain Labs

Email: bd@trustlook.com



Project Overview

Project Name Ludena

Contract codebase N/A

Platform EVM compatible blockchains

Language Solidity

Submission Time 2022.07.25

Report Overview

Report ID TBL_20220725_00

Version 1.0

Reviewer Trustlook Blockchain Labs

Starting Time 2022.07.25

Finished Time 2022.07.30

@ Copyright 2022 Trustlook - All rights reserved



Disclaimer

Trustlook audit reports do not provide any warranties or guarantees on the
vulnerability-free nature of the given smart contracts, nor do they provide any indication
of legal compliance. The Trustlook audit process is aiming to reduce the high level risks
possibly implemented in the smart contracts before the issuance of audit reports.
Trustlook audit reports can be used to improve the code quality of smart contracts and
are not able to detect any security issues of smart contracts that will occur in the future.
Trustlook audit reports should not be considered as financial investment advice.

@ Copyright 2022 Trustlook - All rights reserved



About Trustlook Blockchain Labs

Trustlook Blockchain Labs is a leading blockchain security team with a goal of security
and vulnerability research on current blockchain ecosystems by offering
industry-leading smart contracts auditing services. Please contact us for more
information at (https:/www.trustlook.com/services/smart.html) or Email
(bd@trustlook.com)

The Trustlook blockchain laboratory has established a complete system test
environment and methods.

Black-box Testing The tester has no knowledge of the system being
attacked. The goal is to simulate an external hacking or
cyber warfare attack.

White-box Testing Based on the level of the source code, test the control
flow, data flow, nodes, SDK etc. Try to find out the
vulnerabilities and bugs.

Gray-box Testing Use Trustlook customized script tools to do the security
testing of code modules, search for the defects if any
due to improper structure or improper usage of
applications.

@ Copyright 2022 Trustlook - All rights reserved

https://www.trustlook.com/services/smart.html
mailto:bd@trustlook.com


Introduction

By reviewing the smart contract’s implementation, this audit report has been prepared to
discover potential issues and vulnerabilities of their source code. We outline in the
report about our approach to evaluate the potential security risks. Advice to further
improve the quality of security or performance is also given in the report.

About Defina

Defina.Finance is a data aggregator specially designed for DeFi and NFT, providing
customisable smart contracts to simplify the investment process of DeFi and NFT for
users of all levels.

@ Copyright 2022 Trustlook - All rights reserved



About Methodology

To evaluate the potential vulnerabilities or issues, we go through a checklist of
well-known smart contracts related security issues using automatic verification tools and
manual review. To discover potential logic weaknesses or project specific
implementations, we thoroughly discussed with the team to understand the business
model and reduce the risk of unknown vulnerabilities. For any discovered issue, we
might test it on our private network to reproduce the issue to prove our findings.

The checklist of items is shown in the following table:

Category Type ID Name Description

Coding
Specification

CS-01 ERC Standards The contract is using ERC standards.

CS-02 Compiler Version The compiler version should be specified.

CS-03 Constructor Mismatch The constructor syntax is changed with Solidity versions. Need extra
attention to make the constructor function right.

CS-04 Return standard Following the ERC20 specification, the transfer and approve functions
should return a bool value, and a return value code needs to be added.

CS-05 Address(0) Validation It is recommended to add the verification of require(_to!=address(0)) to
effectively avoid unnecessary loss caused by user misuse or unknown
errors.

CS-06 Unused Variable Unused variables should be removed.

CS-07 Untrusted Libraries The contract should avoid using untrusted libraries, or the libraries need
to be thoroughly audited too.

CS-08 Event Standard Define and use Event appropriately

CS-09 Safe Transfer Using safeTransfer/transfer to send funds instead of send.

CS-10 Gas Consumption Optimize the code for better gas consumption.

CS-11 Deprecated Uses Avoid using deprecated functions.

CS-12 Sanity Checks Sanity checks when setting key parameters in the system

CS-13 Typo Typo in comments or code

CS-14 Fallback Function Splitting fallback and receive function

CS-15 Comment Standard Use clear consistent comments with code semantics

CS-16 Naming Standard Use standard method to name functions and variables

@ Copyright 2022 Trustlook - All rights reserved



Coding
Security

SE-01 Integer overflows Integer overflow or underflow issues.

SE-02 Reentrancy Avoid using calls to trade in smart contracts to avoid reentrancy
vulnerability.

SE-03 Transaction Ordering
Dependence

Avoid transaction ordering dependence vulnerability.

SE-04 Tx.origin usage Avoid using tx.origin for authentication.

SE-05 Fake recharge The judgment of the balance and the transfer amount needs to use the
“require function”.

SE-06 Replay If the contract involves the demands for entrusted management, attention
should be paid to the non-reusability of verification to avoid replay attacks.

SE-07 External call checks For external contracts, pull instead of push is preferred.

SE-08 Weak random The method of generating random numbers on smart contracts requires
more considerations.

Additional
Security

AS-01 Access control Well defined access control for functions.

AS-02 Authentication
management

The authentication management is well defined.

AS-03 Semantic Consistency Semantics are consistent.

AS-04 Functionality checks The functionality is well implemented.

AS-05 Business logic review The business model logic is implemented correctly.

The severity level of the issues are described in the following table:

Severity Description

Critical The issue will result in asset loss or data manipulations.

High The issue will seriously affect the correctness of the
business model.

Medium The issue is still important to fix but not practical to
exploit.

Low The issue is mostly related to outedate, unused code
snippets.

Informational This issue is mostly related to code style, informational
statements and is not mandatory to be fixed.

@ Copyright 2022 Trustlook - All rights reserved



Audit Results

Here are the audit results of the smart contracts.

Scope

Following files have been scanned by our internal audit tool and manually reviewed and tested
by our team:

File names Sha1

CommonUtils.sol 421c56ebcc280637fb4f0787021cd5ebe1c6d063

NewDefinaCardEventsAndErrors.sol 2e21ec79ce9776eca5365f5715d3d756645e0ca4

NewDefinaCardInterface.sol 3ed0d2e62711390fc297938e35676361cb390133

NewDefinaCardStructs.sol 6793beb4e8b277e922f1d18b61422c1b8573c172

NewDefinaCardV2.sol 4c00fe0d71cc4ed7087918b2c61cd40132fd777a

RandomSend.sol df4aafed19e677c7b2437f83320eda1da78e2639

@ Copyright 2022 Trustlook - All rights reserved



Summary

Issue ID Severity Location Type ID Status

TBL_SCA_001 Medium NewDefinaCardV2.sol:362 AS-05 Fixed

TBL_SCA_002 Medium NewDefinaCardV2.sol:342 AS-04 Fixed

TBL_SCA_003 Low NewDefinaCardV2.sol:226 AS-04 Fixed

TBL_SCA_004 Low CommonUtils.sol, RandomSend.sol SE-08 Closed

TBL_SCA_005 Info NewDefinaCardV2.sol: 111 CS-12 Fixed

TBL_SCA_006 Info NewDefinaCardV2.sol:148,155,159 CS-10 Fixed

TBL_SCA_007 Info NewDefinaCardV2.sol: 239 CS-10 Fixed

TBL_SCA_008 Info NewDefinaCardV2.sol: 329 CS-10 Fixed

TBL_SCA_009 Info NewDefinaCardEventsAndErrors.sol:1
0, 13, 14, RandomSend.sol:11, 12

CS-08 Fixed

@ Copyright 2022 Trustlook - All rights reserved



Details

• ID: TBL_SCA-001

• Severity: Medium

• Type: AS-05 (Business logic review)

• Location: NewDefinaCardV2.sol (362)

• Description:

When two tokens A and B were used to call addMerge(). The merge operation is stored
in mergeMap by index of token ID of A. Therefore, only when A token is transferred to a new
owner, the merge record can be retrieved in the _beforeTokenTransfer() function and the record
will be removed. However, if B was transferred to a new owner, the record will be kept and both
A and B in forMerge mapping are true.

It is recommended to check forMerge[B] in function _beforeTokenTransfer() and also
remove the merge record in mergeMap if B was transferred. Otherwise, both A and B will be
freezed to merge again in future.

• Remediation:

This issue has been fixed.

@ Copyright 2022 Trustlook - All rights reserved



• ID: TBL_SCA-002

• Severity: Medium

• Type: AS-04 (Functionality checks)

• Location: NewDefinaCardV2.sol (342)

• Description:

The loop in the function toMerge() is aimed at finding a heroId which is not marked as
True in the iSOkexMap. The iteration time of the loop could be huge or even infinite in the worst
case scenario.

It is recommended to supply a list of hero IDs which are all false in iSOkexMap to
CommonUtils.getHeroBySeed() to avoid using the loop.

Line 345 “index = 0;” can also be removed.

• Remediation:

This issue has been fixed.

@ Copyright 2022 Trustlook - All rights reserved



• ID: TBL_SCA-003

• Severity: Low

• Type: AS-04 (Functionality checks)

• Location: NewDefinaCardV2.sol (226)

• Description:

There is a boundary error in the function nftOwnerClaimCards(). When the tokeId is
equal to maxClaimedAmount, the ID is acceptable to be claimed. However, this ID could be
minted in the function mintMulti() which should not be claimed by the business logic.

It is recommended to update the validation to be:

“(tokenId >= maxClaimedAmount)”

• Remediation:

This issue has been fixed.

@ Copyright 2022 Trustlook - All rights reserved



• ID: TBL_SCA-004

• Severity: Low

• Type: SE-08 (Weak Randomness)

• Location: CommonUtils.sol, RandomSend.sol

• Description:

The random number generators used in these files are predictable.

• Remediation:

The development team is aware of this and has decided to leave it as is.

@ Copyright 2022 Trustlook - All rights reserved



• ID: TBL_SCA-005

• Severity: Info

• Type: CS-12 (Sanity Checks)

• Location: NewDefinaCardV2.sol (111)

• Description:

It is recommended to check that nftAmount_ is much smaller than MAX_MINT.

• Remediation:

This issue has been fixed.

@ Copyright 2022 Trustlook - All rights reserved



• ID: TBL_SCA-006

• Severity: Info

• Type: CS-10 (Gas Consumption)

• Location: NewDefinaCardV2.sol (148,155,159)

• Description:

The delete is not necessary and can be removed.

• Remediation:

This issue has been fixed.

@ Copyright 2022 Trustlook - All rights reserved



• ID: TBL_SCA-007

• Severity: Info

• Type: CS-10 (Gas Consumption)

• Location: NewDefinaCardV2.sol (239)

• Description:

It is recommended to store heroIdMap[tokenId] in a local variable and use the local
variable in the following statements.

• Remediation:

This issue has been fixed.

@ Copyright 2022 Trustlook - All rights reserved



• ID: TBL_SCA-008

• Severity: Info

• Type: CS-10 (Gas Consumption)

• Location: NewDefinaCardV2.sol (329)

• Description:

Variable success is not needed, but can be replaced with mergeResult.

• Remediation:

This issue has been fixed.

@ Copyright 2022 Trustlook - All rights reserved



• ID: TBL_SCA-009

• Severity: Info

• Type: CS-08 (Event Standard)

• Location: NewDefinaCardEventsAndErrors.sol (10, 13, 14), RandomSend.sol (11, 12)

• Description:

It is recommended to index the address.

• Remediation:

This issue has been fixed.

@ Copyright 2022 Trustlook - All rights reserved


